"纠偏"正在进行中。 当如火如荼的"智 能驾驶"被推向风口浪 尖,公众对智能驾驶技 术有诸多疑问。系统是 如何被设计出来的? 它 真能识别所有危险吗? 人类该如何与系统共 处? 康林(化名)和谢春 晓(化名)都是智能驾驶 系统的安全测试员。康 林测试过目前市面上所 有智能驾驶系统:谢春 晓自2019年入行,经历 过多次系统的升级选 代,也曾从事过智能驾 驶系统车辆的维修工 作。而李衡(化名)则是 智能驾驶系统的算法工 程师,曾在多家车企工 作,参与过多个系统的 设计。为了搞清这些问 题,记者与他们三位进 行了深度交流。

一问系统生产流程

上观新闻:一套智能驾驶系统,从设 计到交付使用,整个生产流程是什么样 的? 你在流程中扮演什么角色?

李衡:一套智能驾驶系统从设计到 落地大致有以下几个环节:首先,产品部 门根据对产品、竞品以及对用户实际需 求的研究,明确系统需要实现哪些功能, 进行功能细分后,工程师根据产品部门 的需求设计算法。比如,产品部门表示, 系统需要实现"在高速公路上保持固定 的行驶速度",那工程师设计算法的目 的,就是实现这一功能。

其次,算法设计完成后,进入系统测 试环节:第一步,回灌测试,即不通过实 车测试,而是通过数据的回灌来判定系 统是否达到可用性;第二步,内部的实车 测试,工程师会参考测试员提出的问题 和缺陷,对系统进行改进;第三步,编写 准出报告,判定系统的稳定性和相关指 标是否达到准出要求;第四步,验收部门 在内测的基础上,进行新一轮测试;第五 步,灰度测试,即确保软件稳定性到达一 定要求后,才能给用户使用。

对一个成熟的项目而言,整个流程 至少需要3到6个月。其中,测试员具有 一定的话语权,他们在路测时发现了问 题,有可能是因为产品需求的设计不合 理,那就要修改产品需求,工程师相应地 修改算法

谢春晓:那些在内部测试中已经是 "优秀毕业生"的系统,我们对它进行路 测,我的工作就是找系统的麻烦。如果 它"开"得不好或某些情况处理不当,我 会和工程师反馈,如果是我来开,会怎么 处理,相当于系统的训练员,这样工程师 才能不断优化和更新算法,然后再更新 一个新的版本,测试员再去测试,直到符 合要求,再推送给用户

我不需要懂算法如何运行,只知道 这辆车如果开得比我这个老驾驶员好, 它就过关了。所以测试员也是实车测试 的最后一道防线,帮助智能驾驶系统落 地"最后一公里"的训练师。

其实,有些设计算法的工程师自己 都不会开车。他们的数据来源于车辆通 过各种场景的测试不断采集而来,也就 是说不断地模仿人类开车。我接触过一 些工程师,总觉得自己设计的系统很厉 害。我也经常和工程师聊天,半开玩笑 地提醒,你们参与了智能驾驶系统的设 计,你们就是公共交通的参与者和规划 者,设计出来的这辆车在路上跑,就相当 于你在开这辆车。你们要为自己设计出 来的东西负责。

康林:测试的系统多了,我能感受到 每个系统都有自己的"脾气",有的很"激 进",有的较"谨慎"。以"变道"举例,有 些系统规定必须与前后方车辆相隔一定 距离,才允许变道,但另一些系统就会 "见缝插针"。"激进"的系统在提醒驾驶 员注意接管的同时,车已经变道了。在 路测中遇到这样的情况,我基本能做到 预判,并提前准备好接管车辆,不太会出 大问题。但对新手驾驶员来说,可能不 能马上反应过来。

二问系统普遍问题

上观新闻:智能驾驶目前面临的普 遍问题是什么?

康林:目前不同车企的系统遇到的 问题都差不多。比如,有快速行驶的车 辆从后方强行加塞时,系统不会根据路 况做出合适的操作,而是会提示车主接 管。因为摄像头在车顶,只能看前方,别 的车如果从左前方或右前方夹击,系统 知道要刹停。如果别的车从左后方或者 右后方夹击,系统只会提示驾驶员有车

目前智能驾驶使用得比较成熟的场 景是没有太多临时施工路段的高速,因 为路况不变,好控制。最不成熟的就是 施工路段,系统在识别到前方是复杂的 施工场景后,会主动提示驾驶员接管。 因为高精地图上只显示道路施工,并不 会告诉驾驶员,施工路段是左侧还是右 侧,这时就只能靠摄像头了。因此,系统 对施工路段的应对,才是真正考验车企

工程师团队的算力,也能反映车企在智 能驾驶方面的投入情况。换句话说,拼 的是摄像头的精度,也是工程师设计的

李衡:首先我们要了解,智能驾驶系 统有三大要素,即感知、决策、控制。感 知层好比人的五官,决策层好比人的大 脑,控制层就像人的四肢。感知层是智 能驾驶的基础,如果感知层出问题,再强 大的算法和执行都毫无意义,而智能驾 驶的感知来自摄像头、毫米波雷达和激 光雷达等感知设备。一般带有智能驾驶 功能的车,都装有摄像头。这是纯视觉 的解决方案,即单纯依靠车身摄像头实 现对周围事物的感知。系统根据摄像头 拍到的画面,再通过算法来判断周围路 况。传感器会把捕捉到的信息转换成点 云,你可以把它理解为一个一个像素点, 像云一样

高配版车型一般都配有激光雷达, 感知效果更好。有没有激光雷达并不影 响其他传感器点云的生成,没有激光雷 达的车型可能在同样距离下的感知效果 要弱一点。但这并不是绝对的。激光雷 达的成本比较高,它会把一个一个的点 和视觉看到的一个一个点通过前融合。 后融合和每个传感器反馈的情况结合在 一起,然后输出,这样就形成感知性更强

一辆车是否配有激光雷达,决定了 它的定价。如果没有激光雷达,就会少 两万元。激光雷达还有精确度问题。举 个例子,车前面有个锥桶,但从激光雷达 上看就是一个点。系统该如何处理?是 否应该把它当成障碍物来处理?

三问系统改进情况

上观新闻:是否所有的反馈都会被 改正?

康林:不是。一般工作一天下来,我 大概能记录20多个问题,其中比较严重 的问题,会立马得到反馈。但例如闯黄 灯、不礼让行人、强行加塞、未及时减速 等问题,有的工程师会说受到现阶段技 术的限制,没办法改进。

此前,智能驾驶被吐槽经常急刹车, 我和多家车企的工程师都提过这个问 题。从车企的角度来说,如果车辆急刹 造成追尾,也是后车全责,既没有撞到行 人也没有违反交规,因此不太会被放在 必须改进的问题中。虽然这不涉及人身 安全,但驾驶体验感不好,我们路测中会 有舒适性的考量。

李衡:有些问题的确没办法改,这与 硬件的局限性有关。智能驾驶系统的硬 件注定它达不到一定的层级。比如刹 车,不管工程师写出什么样的程序、给出 什么样的信号,硬件都没办法精准地完 成刹车动作。这和前期硬件的选择有 关,没有办法通过软件层面优化。这时, 车企内部会有详细的技术评审会,将这 些问题交给专家重新评估和讨论。

硬件是由供应商提供给车企,每个 供应商的硬件性能都不一样,硬件也有 系统边界,是否能和软件适配,前期都需 要磨合。而且,车企考量的方面会更多, 比如供应商A的硬件设计不太好,但供 货稳定,供应商B的硬件性能更好但供 货不稳定,那么车企会选择供应商A而 不是供应商B。

四问和人思维差异

上观新闻:我们如何理解系统和人 的思维差异?

康林:人和系统的思维本来就是不一 样的,因为系统是靠设置的有限场景和算 法被赋予驾驶能力的,比较死板。现在车 企的测试场景大同小异。如果测试员在 路测时遇到实验室里没有的场景,可以告 知工程师再加进去,让系统不断学习。

目前,智能驾驶并没有比人聪明,做 不到见机行事。有一次我在国道上路 测,该国道是双向车道的盘山公路。车 子前面有一辆电瓶车,行驶速度缓慢,可 以超车。正常人会借一下逆向的车道, 在超过电瓶车后,迅速返回原车道确保 安全。但有些车企设计的系统不知是否 因算力不够,超车后会一直顺着逆向车 道开,直到出现迎面而来的车辆且被系

有时,系统看似是提升通勤效率的

操作,反而降低了效率。假设一共有三 根车道,带有智能驾驶系统的车行驶在 中间车道,前方还有300米到达下一个红 绿灯路口,车需要进入最右边车道,准备 右转。此时,有另一辆车以30千米/小时 的速度在前方缓慢行驶。若算法设计的 口令是"只需提前190米进入转向车道", 那么当时还有300米,未到190米范围 内,加上城市道路规定限速60千米/小 时。为了超过前方车辆,带有智能驾驶 系统的车会变道至最左边车道,等到距 离红绿灯路口还有190米时,再换回中间 车道。但问题是,等换回中间车道时,最 右侧车道上后方来车已占据原先的位 置。如果人看到右转车道已经排了这么 多车,大多会好好排队,而不是为了超车 去变道,这样反而降低效率

李衡:目前在智能驾驶系统领域有 两个主流解决方案:第一个是测试员接 触到的也是最常见的,面对不同场景,系 统有不同的操作。这是基于规则的算 法,而规则更多基于高精地图。第二个 是从端到端,也是目前比较热门的,你可 以将之理解成AI大模型,即通过图像识 别,直接将识别的内容转化为路径,提供 给智能驾驶系统使用。这一方法可在一 定程度上不完全依靠高精地图,只需要 依靠一些局部信息。

在基于规则的算法发展这么多年 后,车企发现它并不能覆盖所有的场景 和突发情况,大家认为端到端才是解决 智能驾驶问题的最终办法,因此目前所 有车企都在"加码"端到端的竞赛

五问如何看待系统

上观新闻:基于上述讨论,我们应该 如何看待智能驾驶?

谢春晓:首先要明确,智能驾驶相比 几年前已经进步很多,问题也在一个个 解决。记得2019年时, 我测试一辆车, 最 开始工程师设定的车速是80千米/小时, 这辆车就一直按这个速度顶格跑。遇到 复杂路况或下雨天,总归要减速吧!当 时我就给工程师提意见,能不能在系统 识别上加一个限速,这样在遭遇特定路 况时就能减速。工程师称在当时要加这 个指令挺难的。所以我们又想能不能在 高精地图上加一个限速,比如前面有弯 道,车进入这一段的时候,在地图上增加 一个电子围栏,这一段就需要减速了。 后来工程师就在地图上改了数据,当车 识别到地图上有这种路段就会减速。

就目前的技术来说,智能驾驶有它 的优点,尤其是开长途时,人会产生疲惫 感,系统能全方位检测周围车况,帮驾驶 员减负,但要完全把控制权交给它,风险

康林:很多同事刚入行时感到困惑, 明明大部分时间系统比较可靠,为什么 偶尔会莫名其妙地"犯蠢"? 我们首先要 认清,智能驾驶技术还没有特别完善,系 统会有"犯蠢"的时候,保持好心态,别和 系统置气。同时,用户也要放心。即便 你已经开始使用搭载了智驾系统的车, 工程师还是会不断对系统进行更新并推 送新版本的,现在基本上每一周或者半 个月就要更新一次,频率很高。头部车 企没有偷懒的,我们测试员也很忙,一直 在测试新系统。

就目前的智能驾驶系统来说,还是 比绝大部分连调头都看不懂的新手驾驶 员开得好,但和老司机相比有一定差 距。所以,目前对于智能驾驶的安全培 训非常有必要,车企会给用户推送安全 培训视频,只是很多用户直接跳过不去 学,车企也很无奈。

智能驾驶是未来发展的必然趋势, 车企都纷纷加码,等技术完全成熟后,智 能驾驶在未来很可能做到全面普及。那 时候,无论是车企的成本还是用户的成 本都会降下来。

李衡:很多网友表示,人一定比智能 驾驶系统好,这个说法并不准确。系统 能关注到的范围比人更广,只要你不完 全依赖它,善于利用它,它就是一个非常 好的产品。

据《解放日报》

长江干线上中下游 航行规则实现统一

□ 李思远

据交通运输部长江海事局消息,为破解长期存在的长 江航线分段管理难题,新编制的《长江干线安徽至四川段船 舶航行规则》5月12日12时起正式实施。新规则与现行的 《长江江苏段船舶定线制规定》无缝衔接,历史性地实现了 长江干线上中下游航行规则的统一

上世纪90年代起,长江干线先后分段实施了船舶定线 制、分道航行规则的航路改革。随着近年来长江干线通航 环境持续改善, 航运管理智慧化水平显著提升, 长途运输占 比明显提高,原有航行规则已不能完全适应长江航运发展 现状。 作为长江干线首部船舶航行通用规则,《长江干线安徽

至四川段船舶航行规则》以"分道通航、减少航路交叉、大小 船舶分流"为核心原则,通过整合优化上中下游7部航行规 则,统一了航路设置标准与船舶航行规则,科学调整分道通 航比例,合理设置推荐航路、单向通航制水域及横驶区,并 将通航分道、推荐航路、横驶区、单向通航制水域等统一编 制目录,规范表述。

长江海事局副局长左中君说,新规则实施后,将有效减 少船舶交叉会遇频率,降低航行能耗与时间成本,预计每年 将为航行于长江安徽至四川段的超150万艘次船舶节省燃 油约25万吨,有效提高客货运输周转效率,进一步释放长江 航运发展活力。 据新华社

安徽全省茶叶全产业链 产值突破900亿元

□刘旸

5月12日,记者从安徽省政府新闻办召开的新闻发布 会获悉,"十四五"以来,安徽实施茶产业振兴行动,推动产 业链、供应链和价值链融合,茶文化、茶产业和茶科技统筹 发展。2024年,我省茶园面积稳定在320万亩,茶叶全产业 链产值突破900亿元。

安徽聚焦打造千亿级茶叶绿色食品产业目标。据农情 调度,2024年,安徽省茶园面积稳定在320万亩,干毛茶产 量18.1万吨、产值239亿元,分别居全国第六、第八、第七 位。全产业链产值突破900亿元。

2024年,安徽累计提升茶园10万余亩,集成推广绿色防 控、有机肥替代化肥等技术模式。全省累计认证茶叶绿色 食品522个、有机农产品271个、地理标志农产品26个,生态 优质已成为徽茶"金字招牌"

安徽强化科技创新能力,安徽农业大学建成全国唯一 的茶学科国家重点实验室。

安徽加大农业品牌精品培育力度,打造"皖美农品"茶 区域公用品牌、企业品牌、产品品牌。黄山毛峰等安徽"四

大名茶"区域公用品牌价值均超45亿元。 安徽还打造了"云上茶乡·清凉富溪""亲山茶路·云上 之旅"等国家级茶旅精品线路29条、省级茶旅精品线路20 条。以"茶文旅"为代表的三产产值超过380亿元,成为茶产

业高质量发展的主要增长点。 近年来,安徽省商务厅高度重视茶叶出口工作,大力开 拓国际市场,促进全省茶叶出口提质增效、稳步发展。2024

年安徽省茶叶出口2.4亿美元,在中国内地绿茶出口额省区 市排名中位列第二。

据《新安晚报》

江苏又出14条"新招" 推动专精特新企业高质量发展

江苏省政府近日印发《关于进一步支持专精特新中小 企业高质量发展的若干政策措施》,推出4个方面14条举 措,进一步加大制造强省专项资金支持力度,激发涌现更多 专精特新中小企业。措施自今年5月20日起施行。

支持专精特新中小企业建立企业技术中心、工业设计 中心、中试平台等各类企业研发载体,积极创建国家级研发 载体。支持专精特新中小企业围绕省"1650"产业体系实施 重大技术难题协同攻关项目,牵头或参与国家攻关任务,牵 头或参与起草国际标准、国家标准。

在江苏省中小企业公共服务平台开设专精特新中小企 业融资需求"直报窗口",组织有关金融机构3个工作日内点 对点对接,开辟快速审批、快速办理"绿色通道"。扩大江苏 省制造业贷款财政贴息政策支持范围,将专精特新中小企 业都纳入贴息范围,不局限于制造业。用好用足省普惠金 融发展风险补偿基金产品"专精特新贷",新增100亿元贷款

引导和支持专精特新中小企业建设智能制造车间、智 能制造工厂,对获批国家卓越级和领航级智能工厂的专精 特新"小巨人"企业给予资金奖励。支持专精特新中小企业 建设工业互联网平台,并纳入省级重点工业互联网平台综 合评价指标体系。

支持专精特新中小企业"借船出海""链式出海""抱团 出海",支持专精特新中小企业参加中国国际中小企业博览 会等国际性展会。

据《扬子晚报》